The splitting technique in monotone recognition

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stochastic Forward-Backward Splitting for Monotone Inclusions

We propose and analyze the convergence of a novel stochastic algorithm for monotone inclusions that are sum of a maximal monotone operator and a single-valued cocoercive operator. The algorithm we propose is a natural stochastic extension of the classical forward-backward method. We provide a non-asymptotic error analysis in expectation for the strongly monotone case, as L. Rosasco DIBRIS, Univ...

متن کامل

A Monotone+Skew Splitting Model for Composite Monotone Inclusions in Duality

The principle underlying this paper is the basic observation that the problem of simultaneously solving a large class of composite monotone inclusions and their duals can be reduced to that of finding a zero of the sum of a maximally monotone operator and a linear skew-adjoint operator. An algorithmic framework is developed for solving this generic problem in a Hilbert space setting. New primal...

متن کامل

A hybrid ergodic-splitting method for pseudo-monotone equilibrium problems

In this paper, we consider the equilibrium problem for a pseudo-monotone function. For solving this problem, a hybrid ergodic-splitting method is proposed. We decompose the equilibrium function into two functions and then solve auxiliary problems for each decomposition function separately. Under pseudo-monotonicity of the equilibrium function and some additional assumptions, we prove that the s...

متن کامل

Stochastic Forward Douglas-Rachford Splitting for Monotone Inclusions

We propose a stochastic Forward Douglas-Rachford Splitting framework for finding a zero point of the sum of three maximally monotone operators in real separable Hilbert space, where one of them is cocoercive. We first prove the weak almost sure convergence of the proposed method. We then characterize the rate of convergence in expectation in the case of strongly monotone operators. Finally, we ...

متن کامل

A Parallel Splitting Method for Coupled Monotone Inclusions

A parallel splitting method is proposed for solving systems of coupled monotone inclusions in Hilbert spaces, and its convergence is established under the assumption that solutions exist. Unlike existing alternating algorithms, which are limited to two variables and linear coupling, our parallel method can handle an arbitrary number of variables as well as nonlinear coupling schemes. The breadt...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete Applied Mathematics

سال: 2017

ISSN: 0166-218X

DOI: 10.1016/j.dam.2016.04.008